
IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54263 1077

A Pull Based Method for Maintaining Cache

Consistency in Wireless Mobile Networks

T.Jeevanantham
1
, C. Suresh Kumar

2

M.E. Mobile and Pervasive Computing, Anna University, Trichy, TamilNadu1

Teaching Fellow - CSE/IT Department, Anna University, Trichy, TamilNadu2

Abstract: Distributed Cache Invalidation Method (DCIM) proposed a customer based reserve unwavering quality plan.

It is executed on the top of a formerly proposed structural planning for reserving information things in portable

impromptu systems (MANETs). In particular COACS, unique hubs store the inquiries and the locations of the hubs that

store the reactions to these questions. Even though SSUM is proposed in order to provide a server-based consistency
plan, DCIM provides service that is absolutely customer based. DCIM is a force based calculation that actualizes

versatile time to live (TTL), piggybacking, and prefetching, and gives close solid consistency capacities. Reserved

information things are relegated versatile TTL values that compare to their redesign rates at the information source.

The things with lapsed TTL qualities are gathered in approval solicitations to the information source. In order to

invigorate them, while unexpired ones however with high demand rates are pre-fetched from the server. In this paper,

DCIM is broke down to evaluate the postponement and transfer speed picks up (or costs) when contrasted with

surveying each time and push-based plans. DCIM was likewise executed utilizing ns2, and thought about against

customer based and server-based plans to evaluate its execution tentatively. The consistency proportion, deferral, and

overhead activity are accounted for versus a few variables, where DCIM appeared to be better when analyzed than

alternate frameworks.

Keywords: pre-fetch, cache memory, piggy-backing, TTL, DCIM, query direction.

I. INTRODUCTION

The goal of DCIM is to improve the efficiency of the

cache updating process in a network of mobile devices

which cache data retrieved from a data server, without

requiring the latter to maintain state information about the

caches.

The proposed system is pull-based, where the CNs

monitors the TTL information and accordingly triggers the

cache updating and validation process. DCIM is scalable

by virtue of the CNs whose number can increase as the

size of the network grows (each node can become a CN

for an item it requests if not cached suitable to dynamic
MANETs than a push-based elsewhere in the network),

and thus is more alternative since the server does not need

to be aware of CN disconnections. DCIM is also more

suitable when data requests are database queries associated

with tables and attributes.

In a push-based approach, the server would have to map a

cached query to all of its data sources (table attributes) and

execute this query proactively whenever any of the

sources is updated.

Moreover, DCIM adapts the TTL values to provide higher

consistency levels by having each CN estimate the inter-

update interval and try to predict the time for the next

update and sets it as the item’s expiry time.It also

estimates the inter-request interval for each data item to

predict its next request time, and then pre-fetches items

that it expects to be requested soon.

In DCIM, the caching system relies on opportunistic

validation requests to infer the update patterns for the data

items at the server, and uses this information to adapt the

TTL values. Describe the operations of DCIM in details,

but first, we list the messages which we added in DCIM to

those already introduced in COACs. The reader can refer

to [2] for a complete description of all the COACS
messages. the basic interactions of DCIM through a

scenario in which an RN is submitting a DRP (Data

Request Packet) for a query indexed in the QD. The QD

forwards the DRP to the CN caching the item assuming

there was a hit. At the CN, the requested item may be in

the waiting list at the moment if it is being validated.

Validation requests are issued by CNs using CURP
messages. Each entry in the message consists of the query

associated with this item, a timestamp (last modification

time), a “pre-fetch” bit (if set, instructs the server to send

the actual item if updated), and the “expired” bit (tells if

an item is expired). Upon receiving a CURP message, the

server identifies items that have changed and those that

have not, and sends the corresponding CNs in SVRP

messages the ids of items that did not change and those

that changed but do not have the pre-fetch bit set. It also

sends the CNs SUDP messages containing the actual items

if they were prefetched by the same CN and have changed.

Now the CN releases the request from the waiting list and

sends the updated cached response to the RN via a data

reply (DREP) message.

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54263 1078

II. DISTRIBUTED CACHE INVALIDATION

METHOD (DCIM)

In this method, it proposes a pull-based algorithm that

implements adaptive TTL, piggybacking and prefetching,

and provides near strong consistency guarantees. Cached

data items are assigned adaptive TTL values that

correspond to their update rates at the data source. Expired

items as well as non-expired ones but meet certain criteria

are grouped in validation requests to the data source,

which in turn sends the cache devices the actual items that
have changed, or invalidates them, based on their request

rates. This approach, which we call Distributed Cache

Invalidation Mechanism algorithm that implements

adaptive TTL, piggybacking and prefetching, and provides

near strong consistency guarantees. Cached data items are

assigned adaptive TTL values that correspond to their

update rates at the data source. Expired items as well as

non- expired ones but meet certain criteria are grouped in

validation requests to the data source, which in turn sends

the cache devices the actual items that have changed, or

invalidates them, based on their request rates. This
approach, which we call Distributed Cache Invalidation

Mechanism (DCIM), works on top of the COACS

cooperative caching architecture. To our knowledge, this

is the first complete client side approach employing

adaptive TTL and achieving superior availability, delay,

and traffic performance.

A. Block diagram of Distributed Cache Invalidation

Mechanism (DCIM)

Fig. 1 DCIM Block Diagram

The above diagram described about DCIM (Distributed

Cache Invalidation Method) process. In this system the

process of this method is easy to search URL. DCIM is a

client-side system that able to scale too many types of

provided services. DCIM fits more naturally into the

current state of the Internet with the prevailing client/

server paradigm, where clients are responsible for pulling

the data from the server, which in turn maintains little

state information and seldom pushes data to them. On the

other hand, push based approaches, like those described in

the related work section, rely on the server totally or

partially to propagate item changes to the network.

Multiuser or mobile node can search the browser using

URL. The browser fetches information in server using

access point. On another hand query node can perform.

These query node store recently processing URL. In this

URL are stored in limited time because many URL can

stored cache the memory overhead. The user search any

URL, browser first browse to cache node then perform the

operation. Searching URL not found in cache node, the

browser automatically fetch data to server using access

point. Cache can performed in temporary storage.

B. DCIM design operation:

This phase describe the operations of DCIM in details, but

first, list the messages which added in DCIM to those

already introduced in COACs. The reader can refer for a

complete description of all the COACS messages. The

diagram describes basic interactions of DCIM through a

scenario in which an RN is submitting a DRP (Data

Request Packet) for a query indexed in the QD. The QD

forwards the DRP to the CN caching the item assuming

there was a hit. At the CN, the requested item may be in
the waiting list at the moment if it is being validated.

Validation requests are issued by CNs using CURP

messages.

Fig. 2 DCIM operation

Each entry in the message consists of the query associated

with this item, a timestamp (last modification time), a

“prefetch” bit (if set, instructs the server to send the actual

item if updated), and the “expired” bit (tells if an item is

expired). Upon receiving a CURP message, the server

identifies items that have changed and those that have not,
and sends the corresponding CNs in SVRP messages the

ids of items that did not change and those that changed but

do not have the prefetch bit set. It also sends the CNs

SUDP messages containing the actual items if they were

prefetched by the same CN and have changed. Now the

CN releases the request from the waiting list and sends the

updated cached response to the RN via a data reply

(DREP) message.

C. Server operation:

This approach is client-based; the processing at the server

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54263 1079

is minimal. When the server receives a CURP message

from the CN, it checks if all items have been changed by

comparing their last modified times with those included in

the request. Items that have not changed are considered

valid, and their ids are included in the SVRP response to

the CN. On the other hand, items that have changed are

treated in two ways: Expired items (those having the

expiry bit set in the CN validation request) as well as non-

expired ones but having the prefetch bit set are updated by

sending SUDP packets (which contain the actual data

items and the associated timestamps) to the originating
CNs. As to the items whose expiry and prefetch bits are

not set (i.e., will not be requested soon), the server informs

the CN about them using an SVRP message. This is

summarized in the following diagram. As such, the server

only reacts to the received CURP messages that do not

require it to maintain any state information, and thus it

does not need to be aware of the MANET dynamics,

including any CN or QD disconnections. Given this, it is

not difficult to deploy DCIM in an Internet environment.

For example, DCIM can be suited to be deployed on top of

HTTP through mapping DCIM’s request directives into
HTTP header fields and utilizing extended headers, as

allowed by HTTP/1.1 and defined in RFC 2616.

Fig. 3 Server Operation

D. QD operation:
QDs are elected based on their resource capabilities that

explain how the number of QDs in the system is bounded

by two limits. The lower bound corresponds to having

enough QDs, such that an additional (elected) QD will not

yield an appreciable reduction in average QD load. The

upper bound, on the other hand, corresponds to a delay

threshold, since traversing a larger number of QDs will

lead to higher response times. Between these limits, the

number of QDs can change dynamically depending on

how much of the QD storage capacity is used. In the

simulations performed in this work, the number of QDs
averaged 7 at steady state when the number of nodes was

100.

Fig. 4 QD operation

E. CN Processing:

The CNs store the cached queries along with their

responses plus their IDs, and the addresses of the QDs

indexing them. They are distributed in the network and

cache a limited number of items, which makes monitoring

their expiry an easy task. A CN maintains two tables to

manage the consistency of the cache: the Cache

Information Table whose data is common to all queries

whose responses are locally cached and the Query

Information Table that stores query-specific dataAs

shown, the CN maintains the weighted average of inter-

request interval (IRI) for each data item it holds (in a

manner similar to the computation of the inter-update

interval). The process that runs on the CN includes two

threads: a monitoring thread and a processing thread.

Fig. 5. CN Processing

III. EXPERIMENTAL RESULTS

Fig.6 Direct Transmission to Server

Fig. 7. TTL showing Trace Files

IV. CONCLUSION AND FUTURE WORK

A. CONCLUSION:

The presented a client-based cache consistency scheme for

MANETs that relies on estimating the inter update

intervals of data items to set their expiry time. It makes

use of piggybacking and prefetching to increase the

accuracy of its estimation to reduce both traffic and query

delays. We compared this approach to two pull-based

approaches (fixed TTL and client polling) and to two

server-based approaches (SSUM and UIR). This showed

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54263 1080

that DCIM provides a better performance than the other

client based schemes and comparable performance to

SSUM.

B. FUTURE WORK:

In this paper all the process are taken only in client side. In

this method, the user send request to browser for finding

URL or searching content. Browser accepts the request

and send request to server. Server accept request and

provide response to browser. Then next time user request

same URL or content, the browser send request to cache,
not send sever. Cache store content in assigned time, then

that automatically removed. In future the client side

process all applied to server side.

REFERENCES

 [1] T. Andrel, A. Yasinsac, “On credibility of Manet simulations”,

IEEE Computer, 2006, pp.48-54.

[2] H. Artail, H. Safa, K. Mershad, Z. Abou-Atme, N. Sulieman,

“COACS: A Cooperative and adaptive caching system for

MANETS”, IEEE TMC, v.7, n.8, pp. 961-977, 2008.

[3] D. Barbara, T. Imielinski, “Sleepers and Workaholics: Caching

Strategies for Mobile Environments,” ACM SIGMOD, pp. 1-12,

May 1994.

[4] G.Cao, “A Scalable low-Latency Cache Invalidation Strategy for

Mobile Environments,” IEEE TKDE, v. 15, n. 5, pp. 1251-1265,

2003.

[5] D. Li, P. Cao, M. Dahlin. “WCIP: Web Cache Invalidation

Protocol” IETF Internet Draft, March 2001,

http://tools.ietf.org/html/draft-danli-wrec-wcip-01.

[6] J. Cao; Y. Zhang, G. Cao, X. Li, "Data Consistency for Cooperative

Caching in Mobile Environments," Computer , v.40, n.4, pp.60-66,

2007.

[7] P. Cao, C. Liu, “Maintaining strong cache consistency in the

World-Wide Web,” IEEE Trans. Computers, v. 47, pp. 445–457,

1998.

[8] W. Li, E. Chan, D. Chen, S. Lu, "Maintaining probabilistic

consistency for frequently offline devices in mobile ad hoc

networks," 29th IEEE Int’l Conf. Distributed Computing Systems,

pp. 215-222, 2009.

[9] J. Jung, A.W. Berger, H. Balakrishnan, “Modeling TTL-based

internet caches,” IEEE INFOCOM 2003, San Francisco, CA,

March 2003.

[10] B. Krishnamurthy, C. Wills, “Study of piggyback cache validation

for proxy caches in the World Wide Web,” USENIX, Monterey,

CA, December 1997.

http://tools.ietf.org/html/draft-danli-wrec-wcip-01

